Table	T
Table	1

1

*

.

Equation of State Parameters for Liquids

Liquid	vo	b g/cc	C _v Mbcc/g		Mbars					
	cc/g				a ₁	a ₂	a ₃	b ₁	b ₂	b ₃
Acetone	1.266	.7717	.2210 x	10-4	.011430	.066642	.06529	.0065389	.072453	.039347
Ethyl Alcohol	1.266	.500	.2390	11	.010664	.012713	.18343	.0084472	.022402	.15276
Hg	.07390	37.14	.0140	11	.28484	.33709	5.2384			
Glycerine	.7950	.9770	.2360	11	.045598	.18572	.39734	.04035	.20832	.29888
Benzene	1.139	1.105	.1700	11	.015154	.076136	.13401	.0082263	.089867	.075642
Ethyl Ether	1.405	.5270	.2260	п	.0072023	.036930	.082756	.0046190	.042386	.063185
Methanol	1.264	.4750	.2510	11	.0099446	.044929	.11398	.0078472	.050666	.092903
cc1 ₄	.6260	2.114	.08400	п	.014417	.0787315	.159736	.0075315	.095623	.038747
Water	1.002	.1070	.4180	11	.021950	.017078	.07004	.021810	.017614	.067912

9

.

.

2.3 Elastic Solids (G. R. Fowles)

The shock compression of quartz is of particular interest because of its importance to geophysics, its wide-spread use in shock wave studies as a pressure transducer, and because it represents a different class of materials from the more thoroughly studied metals. In this paper we describe measurements similar to those reported by Wackerle (15). The data are in substantial agreement; however, the recording techniques were somewhat different so that the present results* provide independent corroboration, in most respects, of Wackerle's data.

In addition to describing the experiments and the results, we examine the agreement between the uniaxial stress-strain data derived from shock experiments and predictions based on finite strain theory and the second and third-order elastic constants measured by McSkimin, <u>et al</u>. (39), and Thurston, <u>et al</u>. (40). From this comparison it is clear that shock-wave measurements and low pressure acoustic measurements are complementary methods for evaluating higher order elastic coefficients.

In Section 2.31 we describe the experimental technique and the experimental results; Section 2.32 gives a brief outline of finite strain theory and its application to the shock experiments. Conclusions are discussed in Section 2.33.

*These data were reported originally in the author's Ph.D. thesis (48).

10